Half-Life of Radioactive element
A half-life usually describes the decay of discrete entities, such as radioactive atoms. In that case, it does not work to use the definition that states "half-life is the time required for exactly half of the entities to decay". For example, if there is just one radioactive atom, and its half-life is one second, there will not be "half of an atom" left after one second.
An exponential decay can be described by any of the following three equivalent formulas:
where
- N0 is the initial quantity of the substance that will decay (this quantity may be measured in grams, moles, number of atoms, etc.),
- N(t) is the quantity that still remains and has not yet decayed after a time t,
- t1⁄2 is the half-life of the decaying quantity,
- τ is a positive number called the mean lifetime of the decaying quantity,
- λ is a positive number called the decay constant of the decaying quantity.
The three parameters t1⁄2, τ, and λ are all directly related in the following way:
where ln(2) is the natural logarithm of 2 (approximately 0.693).
By plugging in and manipulating these relationships, we get all of the following equivalent descriptions of exponential decay, in terms of the half-life:
Regardless of how it's written, we can plug into the formula to get
- as expected (this is the definition of "initial quantity")
- as expected (this is the definition of half-life)
- ; i.e., amount approaches zero as t approaches infinity as expected (the longer we wait, the less remains).
Decay by two or more processes
Some quantities decay by two exponential-decay processes simultaneously. In this case, the actual half-life T1⁄2 can be related to the half-lives t1 and t2 that the quantity would have if each of the decay processes acted in isolation:
For three or more processes, the analogous formula is:
For a proof of these formulas, see Exponential decay § Decay by two or more processes
Comments
Post a Comment